Financial Time Series Segmentation based on Specialized Binary Tree Representation

نویسندگان

  • Tak-Chung Fu
  • Korris Fu-Lai Chung
  • Chak-man Ng
چکیده

is one of the fundamental components in time series data mining. One of the uses of the time series segmentation is trend analysis-to segment the time series into primitive trends like uptrend and downtrend. In this paper, a time series segmentation method based on a specialized binary tree representation scheme is proposed; this representation scheme is customized for financial time series to cater for its unique behaviors. The proposed segmentation method is based on the concept of data point importance and the location of the cutting points is already encoded in the representation scheme. Therefore, no additional effect is needed to determine the cutting points. One may find it particularly attractive in applications like stock data analysis. The unique behavior of the proposed segmentation method is demostrated by applying to financial time series.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OBST-based segmentation approach to financial time series

Financial time series data are large in size and dynamic and non-linear in nature. Segmentation is often performed as a pre-processing step for locating technical patterns in financial time series. In this paper, we propose a segmentation method based on Turning Points (TPs). The proposed method selects TPs from the financial time series in question based on their degree of importance. A TP's d...

متن کامل

A New Heuristic Algorithm for Drawing Binary Trees within Arbitrary Polygons Based on Center of Gravity

Graphs have enormous usage in software engineering, network and electrical engineering. In fact graphs drawing is a geometrically representation of information. Among graphs, trees are concentrated because of their ability in hierarchical extension as well as processing VLSI circuit. Many algorithms have been proposed for drawing binary trees within polygons. However these algorithms generate b...

متن کامل

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

متن کامل

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

متن کامل

Segmentation of Nonstationary Time Series with Geometric Clustering

We introduce a non-parametric method for segmentation in regimeswitching time-series models. The approach is based on spectral clustering of target-regressor tuples and derives a switching regression tree, where regime switches are modeled by oblique splits. Such models can be learned efficiently from data, where clustering is used to propose one single split candidate at each split level. We u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006